Runtime Compute Control: Explicit Inference-Time
Computation Management for Large Language Models

Jestis Tabares Montilla
Independent Researcher
jesus@tabares.eu
https://tabares.eu

Abstract

We introduce Runtime Compute Control (RCC), a system-level approach for explic-
itly managing computation during LLM inference without modifying the underlying model
weights. Unlike compression techniques (quantization, pruning) that optimize storage, or ar-
chitectural changes (MoE, early exit) that require training, RCC operates as a post-training
execution layer that selectively controls which computational paths are evaluated at runtime.

RCC exposes a single control parameter—the compute ratio—that determines the frac-
tion of feed-forward network computation executed per forward pass. The system maintains
the original model checkpoint unmodified; computation reduction occurs entirely at the
execution level.

We validate RCC on Qwen2.5-3B using a custom C++ runtime with memory-mapped
weights, evaluated on CPU without kernel-level optimizations. At 75% compute ratio, we
observe 1.15x throughput improvement; output remains coherent on structured comple-
tion tasks but exhibits prompt-dependent degradation. At 50% compute ratio, throughput
reaches 1.62x but output quality degrades significantly without additional calibration.

We document explicit limitations: quality degradation is non-linear and prompt-dependent;
lightweight guardrails (n-gram repetition, entropy monitoring) detect catastrophic failures
but not subtle semantic degradation; and the overhead of quality-preserving fallback mech-
anisms can eliminate net compute savings.

RCC is designed to be architecture-agnostic, though currently validated only on a sin-
gle model family. This work establishes inference-time compute control as a new system
category—orthogonal to compression and acceleration—while acknowledging that practical
deployment requires advances beyond this initial formulation.

1 Introduction

Large language model inference presents a fundamental rigidity: once a model is deployed,
every forward pass executes the same computational graph regardless of input complexity, out-
put requirements, or resource constraints. A simple completion and a complex reasoning task
consume identical compute. This fixed-cost execution model creates inefficiencies across de-
ployment scenarios—from edge devices with strict power budgets to cloud services optimizing
cost-per-query.

The research community has developed multiple strategies to reduce inference cost. Quanti-
zation and pruning compress model weights, reducing memory footprint and accelerating matrix
operations. Knowledge distillation transfers capabilities to smaller architectures. Mixture-of-
experts (MoE) activates subsets of parameters per token, but requires architectural changes
during training. Speculative decoding and early exit mechanisms attempt dynamic compute
allocation, but operate within narrow bounds or require model modifications.

These approaches share a common characteristic: they optimize what the model is rather than
how the model executes. Compression techniques produce a new, smaller artifact. Architectural


https://tabares.eu

changes require retraining. The original model checkpoint—the artifact that practitioners have
validated, fine-tuned, and deployed—cannot be directly controlled at inference time.

We identify a gap in the current landscape: the absence of explicit, post-training con-
trol over inference-time computation. Specifically, we ask: can a system decide how much
computation a model performs per forward pass, without modifying weights, without retraining,
and without architectural changes?

This paper introduces Runtime Compute Control (RCC), a system-level approach that ad-
dresses this question. RCC operates as an execution layer between the model checkpoint and
the inference runtime. It exposes a single parameter—the compute ratio—that determines what
fraction of the model’s feed-forward computation is evaluated. The model weights remain un-
modified; the checkpoint loaded at 100% compute is identical to the checkpoint loaded at 50%
compute. Control occurs entirely at execution time.

RCC does not compete with compression or acceleration techniques. It operates on a different
axis: controllability. A compressed model is permanently smaller. An RCC-controlled model
can execute at different compute levels across requests, within a request, or adaptively based on
external signals. This capability has no equivalent in current inference systems.

We validate RCC on Qwen2.5-3B using a custom C-++ runtime with memory-mapped
weights, evaluated on CPU. Our results establish feasibility, not optimality: at reduced com-
pute ratios, throughput increases but output quality degrades in prompt-dependent ways. We
characterize these limitations explicitly, documenting where the current approach succeeds and
where it requires further development.

The contribution of this work is not a production-ready system. It is the formulation of
a new problem—inference-time compute control—and empirical evidence that the problem is
tractable. We position RCC as a foundation for future research in adaptive inference, quality-
aware scheduling, and hybrid execution regimes.

2 System Overview

2.1 Design Principles

RCC is designed around three invariants:

1. Checkpoint preservation: The model weights are never modified. The same checkpoint
file is used regardless of compute ratio. No transformation, re-encoding, or preprocessing
is applied to weights.

2. Execution-time control: Compute reduction occurs during forward pass evaluation,
not before. The decision of how much to compute can change between requests or even
between tokens within a single generation.

3. Transparent interface: The system exposes a single scalar parameter (compute ratio,
ranging from 0.0 to 1.0) that controls the fraction of computation performed. No model-
specific configuration or per-layer tuning is required from the user.

These invariants distinguish RCC from adjacent approaches. Pruning modifies weights per-
manently. Quantization re-encodes weights into lower precision formats. Mixture-of-experts
requires architectural changes and routing logic trained into the model. RCC operates on un-
modified weights at execution time.

2.2 System Interface

From the user’s perspective, RCC interposes between the model checkpoint and the inference
call:



Input: model_checkpoint, prompt, compute_ratio [0.0, 1.0]
OQutput: generated_tokens, throughput_metrics

At compute_ratio = 1.0, the system performs standard inference—all computational paths
are evaluated. As the ratio decreases, fewer paths are evaluated per forward pass. The mapping
from ratio to specific compute reduction is handled internally; the user controls only the ratio.

The interface is stateless with respect to compute ratio: each inference call specifies its own
ratio. This enables adaptive policies where different requests, or different phases of generation,
execute at different compute levels.

2.3 Scope of Control

RCC currently targets feed-forward network (FFN) computation within transformer blocks. In
standard transformer architectures, FFN layers constitute approximately two-thirds of total
floating-point operations per forward pass. Attention computation remains unmodified in the
current implementation.

This scope is a design choice, not a fundamental limitation. FFN layers exhibit structural reg-
ularity (large matrix multiplications with element-wise activations) that admits efficient partial
evaluation. Attention mechanisms involve more complex dependencies (key-value interactions
across sequence positions) that complicate selective execution. Extending control to attention
is a direction for future work.

2.4 What RCC Does Not Do

To prevent misinterpretation, we explicitly state what RCC is not:

e Not compression: Model size on disk and in memory is unchanged. A 3B model at 50%
compute ratio still loads 3B parameters.

e Not acceleration: RCC does not optimize kernel execution or memory access patterns.
Speedup comes solely from executing fewer operations, not from executing the same oper-
ations faster.

e Not quality-preserving by construction: Reducing computation affects model output.
RCC provides control, not guarantees. Quality preservation requires external mechanisms
(calibration, guardrails, fallback policies) that are outside RCC’s core scope.

e Not a training method: RCC applies post-training. It does not involve fine-tuning,
distillation, or any gradient-based optimization.
2.5 Runtime Architecture

The RCC runtime consists of three components:

1. Checkpoint loader: Memory-maps the original model weights without transformation.
Supports standard formats; no custom serialization required for the model itself.

2. Execution controller: Receives the compute ratio and determines which computational
paths to evaluate for each forward pass. The controller maintains internal state for con-
sistency within a generation but exposes no parameters beyond the ratio.

3. Inference engine: Executes the transformer forward pass, skipping computation for
paths not selected by the controller. The engine is responsible for correct output despite
partial evaluation.



The current implementation is a custom C+-+ runtime optimized for validation, not pro-
duction throughput. It demonstrates that the architecture is viable; performance engineering is
future work.

3 Evaluation

3.1 Experimental Setup

We evaluate RCC on a single model and hardware configuration to establish baseline feasibility.
Our goal is not comprehensive benchmarking but demonstration that inference-time compute
control produces measurable effects on throughput and output characteristics.

Model: Qwen2.5-3B, a 3-billion parameter transformer with 36 layers, 2048 hidden di-
mension, and 11008 intermediate dimension in FFN blocks. We use the base (non-instruct)
checkpoint without modification.

Runtime: Custom C+-+ inference engine with memory-mapped weight loading. The im-
plementation prioritizes correctness and validation over throughput optimization. No SIMD
vectorization, GPU acceleration, or kernel-level optimizations are applied.

Hardware: Consumer-grade CPU (Intel Core series). All measurements are single-threaded
to isolate the effect of compute reduction from parallelization.

Methodology: For each compute ratio, we measure tokens per second (throughput), out-
put coherence on a fixed set of completion prompts, and qualitative assessment of degradation
patterns. We do not report perplexity or benchmark scores. These metrics require ground-truth
references and measure model quality, not system behavior.

3.2 Throughput Results

Compute Ratio Tokens/sec Relative Speedup

100% 0.46 1.00x (baseline)
85% 0.53 1.15x%
75% 0.55 1.19x
50% 0.75 1.62x

Table 1: Throughput at varying compute ratios. Measurements on CPU, single-threaded.

Throughput increases monotonically as compute ratio decreases. The relationship is sub-
linear: reducing compute by 50% yields 1.62x speedup, not 2x. This reflects fixed costs (atten-
tion, embedding lookup, sampling) that are unaffected by FFN compute reduction.

Absolute throughput (0.46 tokens/sec at baseline) reflects our unoptimized CPU runtime,
not RCC overhead. A production implementation with GPU acceleration and optimized kernels
would show higher absolute throughput; the relative speedup from compute reduction would
remain comparable.

3.3 Output Characteristics

We evaluate output coherence on 10 completion prompts spanning English and Spanish, technical
and narrative styles. Coherence is assessed qualitatively: does the output form gramiatically
valid, topically relevant continuations?

Key observations: (1) Degradation is non-linear: quality drops sharply between 85% and
75%, not gradually across the range. (2) Degradation is prompt-dependent: some prompts
remain coherent at 75% while others degrade at 85%. We found no reliable predictor of which



Compute Ratio Coherent Degradation Pattern

100% 10/10 None (baseline)

85% 7/10 Occasional repetition, topic
drift

5% 5/10 Frequent repetition loops, re-
duced vocabulary

50% 2/10 Severe degradation, nonsensi-
cal output

Table 2: Output coherence at varying compute ratios across 10 test prompts.

prompts are robust. (3) Failure modes are detectable but not preventable: repetition loops and
entropy collapse are observable post-hoc.

3.4 Guardrail Experiments

We implemented lightweight runtime guardrails to detect degradation and trigger fallback to
100% compute: n-gram repetition detection, output entropy monitoring, and token novelty
rate.

Results: Guardrails successfully detect catastrophic failures (infinite loops, character-level
repetition). However, subtle semantic degradation passes undetected, and fallback overhead can
exceed the compute savings from reduced-ratio generation. At 85% compute with guardrails,
effective compute consumption was 1.17x baseline due to fallback frequency.

This finding is significant: quality-preserving fallback mechanisms can eliminate the
efficiency gains they are designed to protect. Guardrails provide safety, not savings.

4 Limitations and Discussion

4.1 Current Limitations

We identify five limitations of the current RCC implementation:

L1. Quality degradation is unpredictable. Output quality does not degrade smoothly
with compute ratio. Some prompts tolerate 75% compute; others fail at 90%. We found no
reliable signal that predicts robustness.

L2. Guardrails detect symptoms, not causes. Our runtime guardrails identify repe-
tition loops and entropy collapse after they begin. They cannot predict degradation before it
occurs, nor detect subtle semantic drift.

L3. Fallback overhead can exceed savings. When guardrails trigger regeneration at
100% compute, the total cost includes both the failed partial generation and the full regeneration.
At 85% compute with active guardrails, our measured effective compute was 1.17x baseline.

L4. Single-model validation. All results are from Qwen2.5-3B. We have not validated
whether findings generalize to other model families, scales, or architectures.

L5. CPU-only implementation. Our runtime demonstrates feasibility but not produc-
tion performance. GPU inference introduces different bottlenecks that may change the compute-
reduction-to-speedup relationship.

4.2 What RCC Establishes

Despite these limitations, RCC demonstrates:



Feasibility. Post-training, execution-time compute control is technically viable. A system
can reduce FFN computation without modifying weights and produce coherent output under
favorable conditions.

Measurability. The relationship between compute ratio and system behavior is observable
and quantifiable. RCC provides a control surface that admits empirical study.

Separability. Compute control is orthogonal to compression and acceleration. RCC can,
in principle, be combined with quantized models or optimized runtimes.

4.3 Future Directions

RCC opens several research questions: adaptive policies for dynamic ratio adjustment, calibra-
tion to improve robustness, extension to attention mechanisms, and quality prediction before
generation. We leave these to future work.

4.4 Conclusion

Runtime Compute Control addresses a capability gap in LLM inference: the absence of explicit,
post-training control over computation. We demonstrate that such control is feasible, describe
a system architecture that provides it, and characterize both its effects and its limitations.

RCC is not a production system. It is a formulation of a problem and evidence that the
problem is tractable. The value of this work lies not in the speedups achieved—which are modest
and fragile—but in establishing inference-time compute control as a valid research direction and
system design axis.

We release this work to document priority, invite scrutiny, and encourage others to address
the limitations we have identified.



	Introduction
	System Overview
	Design Principles
	System Interface
	Scope of Control
	What RCC Does Not Do
	Runtime Architecture

	Evaluation
	Experimental Setup
	Throughput Results
	Output Characteristics
	Guardrail Experiments

	Limitations and Discussion
	Current Limitations
	What RCC Establishes
	Future Directions
	Conclusion


